

Oxford Maternal & Perinatal Health Institute Green Templeton College

INTERGROWTH-21ST PROJECT CONCEPTS, METHODS AND RESULTS

Dr Leila Cheikh Ismail Project Leader University of Oxford

on behalf of:

The International Fetal and Newborn Growth Consortium for the 21st Century "Understanding early human growth and development across populations for better health and nutrition throughout life."

INTERGROWTH-21ST PROJECT NETWORK

INTERGROWTH-21ST PROJECT

WHY?

WHO CHILD GROWTH STANDARDS

WHO CHILD GROWTH STANDARDS

WHO child growth standards

- (o-6o months):
- Length/height-for-age
- Weight-for-age
- Weight-for-length/height
- BMI-for-age
- Head circumference-for-age
- Arm circumference-for-age
- Subscapular skinfold-for-age
- Triceps skinfold-for-age
- Motor development milestones

No information on:

• Growth during pregnancy

What is missing?

- Size at birth by GA
- Postnatal growth of preterm infants

INTERNATIONAL FETAL AND NEWBORN GROWTH CONSORTIUM FOR THE **21**ST CENTURY

THE INTERGROWTH-21st Project

SYSTEMATIC REVIEWS

Crown-rump length / gestational age estimation - Napolitano R, Dhami J, Ohuma EO et al (2014) *BJOG*

Fetal growth monitoring by ultrasound - Ioannou C, Talbot K, Ohuma E et al (2012) *BJOG*

Birthweight charts - Giuliani F, Ohuma E, Spada E et al (2015) *Acta Paed*iatrica

Preterm postnatal growth charts -Giuliani F, Cheikh Ismail L, Bertino E et al (2016) *AJCN*

Gestational weight gain charts -Ohadike CO, Cheikh Ismail L, Ohuma EO et al (2016) *Adv Nutr* Material available diverse and of variable quality

WHO CHILD GROWTH STANDARDS

WHO RECOMMENDATION (1995)

Human growth worldwide should be evaluated using

international standards describing how individuals should grow

> Report of WHO Expert Committee 1995 Physical Status: The Use and Interpretation of Anthropometry, Technical Report Series No. 854

REFERENCES vs. **STANDARDS**

Reference charts describe how fetuses and newborns *have* grown at a particular time and/or place

International standards describe how fetuses and newborns *should* grow when nutritional, environmental and health constraints on growth are minimal

REFERENCES vs. **STANDARDS**

Reference charts describe how fetuses and newborns *have* grown at a particular time and/or place

International standards describe how fetuses and newborns *should* grow when nutritional, environmental and health constraints on growth are minimal

WHAT IS INTERGROWTH-21ST?

 Extend the concepts promoted by WHO MGRS into fetal and neonatal life

 Offer a conceptual continuity between the development and implementation of prenatal and postnatal growth standards

AIMS OF INTERGROWTH-21ST

(1) Develop new <u>prescriptive</u>' standards describing normal fetal growth, preterm growth and newborn nutritional status

AIMS OF INTERGROWTH-21ST

(2) Look at post-natal growth of the preterm and term INTERGROWTH-**21**st infants up to 2 years

INTERGROWTH-21ST PROJECT

HOW?

CHALLENGES

Practical considerations:

Where?

Who?

Methodological considerations: Multicentre study

Complement WHO charts

Pooling the results

- \rightarrow Site selection
- \rightarrow Population selection
- → Same equipment, protocols, level of care and recommendations
- \rightarrow Same anthropometric equipment and protocol
- → Ensuring good data quality throughout the study and across sites

SITE SELECTION

"Healthy" environment criteria for FGLS site selection:

- Low-birthweight rate <10%
- Mean birth weight >3100g
- Perinatal mortality <20 per 1000 live births
- >75% mothers have attained an educational level/SES indicator greater than the locally defined cut-off points
- Lack of known, major, non-microbial environmental contaminants
- Altitude <1600m

INTERGROWTH-21ST SITES

POPULATION SELECTION

POPULATION SELECTION

POPULATION SELECTION LOW-RISK PREGNANCY CRITERIA

- a) aged \geq 18 and \leq 35 years;
- b) BMI ≥18.5 and <30 kg/m²;
- c) height \geq 153 cm;
- d) singleton pregnancy;
- e) a known LMP with regular cycles (defined as a 26-30 day cycle in the previous 3 months), without hormonal contraceptive use, pregnancy or breastfeeding in the 3 months before pregnancy;
- f) natural conception
- g) no relevant past medical history (refer to screening form), with no need for long-term medication (including fertility

Criteria defining a low-risk study population as healthy and well-nourished (both before and during pregnancy) to ensure that fetal growth is optimal

- o) no clinically significant atypical red cell alloantibodies;
- p) negative urinalysis;
- q) systolic blood pressure <140 mmHg and diastolic blood pressure < 90 mmHg;
- r) haemoglobin ≥11 g/dl;
- s) negative syphilis test and no clinical evidence of any other sexually transmitted diseases, including clinical Trichomoniasis;
- not in an occupation with risk of exposure to chemicals or toxic substances, or very physically demanding activity to be evaluated by local standards. Also women should not be conducting vigorous or contact sports, as well as scuba diving or similar activities

INTERGROWTH-21ST THREE COMPLEMENTARY STUDIES

Newborn Cross-Sectional Study (NCSS) of all newborns in eight centres over 12 months

Fetal Growth Longitudinal Study (**FGLS**) from <14⁺⁰ weeks of gestation to birth, with follow-up to age 2

Preterm Postnatal Follow-up Study (**PPFS**) of all preterm infants in FGLS to age 2

INTERGROWTH-21ST THREE COMPLEMENTARY STUDIES

Newborn Cross-Sectional Study (NCSS)

- Birth weight, length and head circumference for gestational age standards
- Epidemiological studies

Fetal Growth Longitudinal Study (FGLS) International fetal growth standards

Preterm Postnatal Follow-up Study (PPFS)

• Preterm postnatal growth standards

FGLS TO DEVELOP NEW FETAL GROWTH STANDARDS

FGLS TO DEVELOP NEW FETAL GROWTH STANDARDS

ULTRASOUND MEASUREMENTS

PEAPOD® INFANT BODY COMPOSITION SYSTEM

- 7-minute test
- Estimates body composition by densitometry
- Calculates the amount of fat mass and the fatfree mass
- UK only

PPFS TO DEVELOP NEW GROWTH STANDARDS FOR PRETERM INFANTS

PPFS TO DEVELOP NEW GROWTH STANDARDS FOR PRETERM INFANTS

For all babies born to mothers in FGLS at $\geq 26^{+0}$ and $< 37^{+0}$ weeks of gestation at birth:

Collect delivery information and anthropometry (within 12 hours if possible)

At 48-72 hours after birth, collect health information and anthropometry

Follow-up visits for 2, 4, 6, and 8 weeks after birth. Collection of health and dietary information and anthropometry

Follow-up visits for 3, 4, 5, 6, 7, and 8 months after birth. Collection of health and dietary information and anthropometry

PIFS TO STUDY POSTNATAL GROWTH AND DEVELOPMENT UP TO **2** YEARS OF AGE

PIFS TO STUDY POSTNATAL GROWTH AND DEVELOPMENT UP TO **2** YEARS OF AGE

Follow-up visit at 1 year of age. Collect health and dietary information, anthropometry and motor development achievement

Follow-up visit at 2 year of age. Collect health and dietary information, anthropometry, motor development achievement and neurodevelopment assessment

DATA COLLECTED

- Retrospective severe and chronic morbidities, hospital admission and treatments
- Weight, length and head circumference
- 24h Infant Food Recall and Food Frequency Questionnaire
- Milestones achievement
- + Neurodevelopment assessment

NEURODEVELOPMENTAL ASSESSMENT AT 2 YEARS

- 1. Gross motor function
- 2. Cognition, language development, behaviour and fine motor skills
- 3. Vision
- 4. Hearing
- 5. Sleep

NCSS TO PRODUCE SIZE AT BIRTH OR GESTATIONAL AGE STANDARDS AND EPIDEMIOLOGICAL STUDIES

* Barros (2015) JAMA Pediatr 169(3) Victora et al. (2015) JAMA Pediatr 169(7)

NCSS TO PRODUCE SIZE AT BIRTH OR GESTATIONAL AGE STANDARDS AND EPIDEMIOLOGICAL STUDIES

For every baby born in each hospital during the 12 month NCSS period the Pregnancy and Delivery form will be completed:

Anthropometric measurements (weight, length and head circumference) within 12 hours of birth (no later than 24 hours)

After delivery, collect delivery information

NO FURTHER follow-up of these babies required after hospital discharge

INTERGROWTH-21ST POPULATIONS

TIMELINE

Recruitment <14weeks

assessment

ULTRASOUND OPERATIONS MANUAL

INTERGROWTH-21st International Fetal and Newborn Growth Standards for the 21st Century

The International Fetal and Newborn Growth Consortium

ULTRASOUND OPERATIONS MANUAL

- Measurement Techniques
- Equipment
- Step by step guide
- Backing up ultrasound data, images and volumes
- Local standardisation and training exercise

September 2009

Detailed instructions on:

- Measurement techniques
- Equipment
- Step-by-step guide
- Data management
- Local standardisation and training exercises

ANTHROPOMETRY HANDBOOK

INTERGROWTH-21st International Fetal and Newborn Growth Standards for the 21st Century

The International Fetal and Newborn Growth Consortium

ANTHROPOMETRY HANDBOOK

August 2010

Detailed instructions on:

- Measurement techniques
- Equipment
- Step-by-step guide
- Data management
- Local standardisation and training exercises

NEURODEVELOPMENT ASSESSMENT MANUAL OF OPERATIONS

INTERGROWTH-21st International Fetal and Newborn Growth Standards for the 21st Century

The International Fetal and Newborn Growth Consortium

NEURODEVELOPMENT ASSESSMENT OPERATIONS MANUAL

November 2012

Detailed instructions on:

- Measurement techniques
- Equipment
- Step-by-step guide
- Data management
- Local standardisation and training exercises

ANTHROPOMETRIC MEASUREMENTS

QUALITY CONTROL PROCEDURES

For example, for anthropometry:

- Validations in database
- QC (5% or 10%)
- Anthropometry repetition rates
- Anthropometry rounding rates
- Measurement windows check that visits are within pre-set ranges
- Anthropometric standardisation every 3 months

DATA MANAGEMENT

The Methodology of the INTERGROWTH-21st Project

21 papers

Concepts and rationale
Study protocol
Statistical issues
Training methods
Standardisation processes
Quality control measures
Country-specific papers
Data management

BJOG Vol.120 Suppl 2 (16 Sept 2013) Available freely online www.bjog.org

ISSN 1470-0328/1471-0528 (ONLINE) SEPTEMBER 2013 VOLUME 120. SUPPLEMENT 2

The Methodology of the INTERGROWTH-21st Project

> Guest Editors Aris T. Papageorghiou Ann Lambert Fernando C. Barros Zulfiqar A. Bhutta

A rapid questionnaire assessment of environmental exposures to pregnant women in the INTERGROWTH-21st Project

B Eskenazi,^a A Bradman,^a D Finkton,^b M Purwar,^c JA Noble,^d R Pang,^e O Burnham,^b L Cheikh Ismail,^b F Farhi,^b FC Barros,^{f,g} A Lambert,^b AT Papageorghiou,^b M Carvalho,^h YA Jaffer,ⁱ E Bertino,^j MG Gravett,^k DG Altman,^l EO Ohuma,^b SH Kennedy,^{b,*} ZA Bhutta,^{m,*} J Villar,^{b,*} for the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st)

^a Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
 ^b Nuffield Department of Obstetrics & Gynaecology and Oxford Maternal & Perinatal Health Institute, University of Oxford, Oxford, UK
 ^c Nagpur INTERGROWTH Research Centre, Ketkar Hospital, Nagpur, India ^d Department of Engineering Science, University of Oxford, Oxford, UK ^e School of Public Health, Peking University, Beijing, China ^f Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, ^g Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, Brazil ^h Faculty of Health Sciences, Aga Khan University, Nairobi, Kenya ⁱ Department of Family & Community Health, Ministry of Health, Muscat, Sultanate of Oman ^j Dipartimento di Scienze Pediatriche e dell'Adolescenza, Cattedra di Neonatologia, Università degli Studi di Torino, Torino, Italy ^k University of Washington School of Medicine, Seattle, WA, USA ¹ Centre for Statistics in Medicine, University of Oxford, Oxford, UK

Eskenazi (2013) BJOG 120 (Suppl 2): 129-38

Standardisation and quality control of ultrasound measurements taken in the INTERGROWTH-21st Project

I Sarris,^a C Ioannou,^a EO Ohuma,^{a,b} DG Altman,^b L Hoch,^a C Cosgrove,^a S Fathima,^{a,c} LJ Salomon,^d AT Papageorghiou,^a for the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st)

^a Nuffield Department of Obstetrics & Gynaecology and Oxford Maternal & Perinatal Health Institute, Green Templeton College, University of Oxford, Oxford, UK ^b Centre for Statistics in Medicine, University of Oxford, Oxford, UK ^c Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, UK ^d Université Paris V—René Descartes, Maternité Hôpital Necker-Enfants Malades, AP-HP, Paris, France

Correspondence: Dr AT Papageorghiou, Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford, OX3 9DU, UK. Email aris.papageorghiou@obs-gyn.ox.ac.uk

Sarris (2013) BJOG 120 (Suppl 2): 33-7

Anthropometric standardisation and quality control protocols for the construction of new, international, fetal and newborn growth standards: the INTERGROWTH-21st Project

L Cheikh Ismail,^a HE Knight,^a EO Ohuma,^a L Hoch,^a WC Chumlea,^b for the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st)

^a Nuffield Department of Obstetrics & Gynaecology, and Oxford Maternal & Perinatal Health Institute, Green Templeton College, University of Oxford, Oxford, UK ^b Lifespan Health Research Center, Departments of Community Health and Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA

Correspondence: Dr L Cheikh Ismail, Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK. Email leila.cheikhismail@obs-gyn.ox.ac.uk

INTERGROWTH-21ST PRODUCTS

WHO CHILD GROWTH STANDARDS

'The new growth standards are referable to all children everywhere, clearly show that all children in the world can and should grow equally well, and also demonstrate that in today's world adequate nutrition, environment, and health are stronger determinants of growth than are gender or ethnicity'.

20th April 2006

international pediatric association association internationale de pédiatrie asociación internacional de pediatría

de Onis et al. (2006) Acta Paediatr 450:1-101

DATA POOLING

Large differences exist in size at birth and in rates of impaired fetal growth worldwide.

> Could the INTERGROWTH-21ST Project data be pooled together?

Fetal HC by gestational age

Fetal HC by gestational age for UK, USA & Italy

Fetal HC by gestational age for UK, USA, Italy & China

Fetal HC by gestational age for UK, USA, Italy, China & India

Fetal HC by gestational age for UK, USA, Italy, China, India & Kenya

Fetal HC by gestational age for UK, USA, Italy, China, India, Kenya & Oman

Fetal HC by gestational age for UK, USA, Italy, China, India, Kenya, Oman & Brazil

Sensitivity analysis for fetal HC measures: All 8 sites, excluding UK, India, China & Kenya separately

Fetal growth is similar across diverse geographical settings when mothers' nutritional and health needs are met, and environmental constraints on growth are low

WHAT ABOUT SIZE AT BIRTH?

Newborn length by gestational age for UK, USA and Italy

Newborn length by gestational age for UK, USA, Italy and China

Newborn length by gestational age for UK, USA, Italy, China and India

Newborn length by gestational age for UK, USA, Italy, China, India and Kenya

Newborn length by gestational age for UK, USA, Italy, China, India, Kenya and Oman

Newborn length by gestational age for UK, USA, Italy, China, India, Kenya, Oman & Brazil

Fetal growth and neonatal length are similar across diverse geographical settings when mothers' nutritional and health needs are met, and environmental constraints on growth are low

The likeness of fetal growth and newborn size across non-isolated populations in the INTERGROWTH-21st Project: the Fetal Growth Longitudinal Study and Newborn Cross-Sectional Study

José Villar, Aris T Papageorghiou, Ruyan Pang, Eric O Ohuma, Leila Cheikh Ismail, Fernando C Barros, Ann Lambert, Maria Carvalho, Yasmin A Jaffer, Enrico Bertino, Michael G Gravett, Doug G Altman, Manorama Purwar, Ihunnaya O Frederick, Julia A Noble, Cesar G Victora, Zulfiqar A Bhutta*, Stephen H Kennedy*, for the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st)

Villar (2014) Lancet Diabetes Endocrinol 2(10):781-92

'The new growth standards are referable to all children everywhere, clearly show that all children in the world can and should grow equally well, and also demonstrate that in today's world adequate nutrition, environment, and health are stronger determinants of growth than are gender or ethnicity'.

World Health Organization

de Onis et al. (2006) Acta Paediatr 450:1-101

'Fetal skeletal growth and newborn linear size are strikingly similar among geographically diverse populations when mothers' environmental, health, and nutritional conditions are met... [those differences] are more likely due to environmental and socioeconomic differences than genetic variation'.

Villar (2014) Lancet Diabetes Endocrinol 2(10):781-92

Healthy, well-nourished, educated women, living in environments without constraints on fetal growth, who are receiving adequate antenatal care, have babies of similar size, irrespective of ethnicity/race.

Birth

Intrauterine life ----> Birth

International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project

Aris T Papageorghiou, Eric O Ohuma, Douglas G Altman, Tullia Todros, Leila Cheikh Ismail, Ann Lambert, Yasmin A Jaffer, Enrico Bertino, Michael G Gravett, Manorama Purwar, J Alison Noble, Ruyan Pang, Cesar G Victora, Fernando C Barros, Maria Carvalho, Laurent J Salomon, Zulfiqar A Bhutta^{*}, Stephen H Kennedy^{*}, José Villar^{*}, for the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st)[†]

© University of Oxford

Ref: Papageorghiou AT et al. Lancet 2014; 384: 869-79.

International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project

José Villar, Leila Cheikh Ismail, Cesar G Victora, Eric O Ohuma, Enrico Bertino, Doug G Altman, Ann Lambert, Aris T Papageorghiou, Maria Carvalho, Yasmin A Jaffer, Michael G Gravett, Manorama Purwar, Ihunnaya O Frederick, Alison J Noble, Ruyan Pang, Fernando C Barros, Cameron Chumlea, Zulfiqar A Bhutta*, Stephen H Kennedy*, for the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21[#])†

International Standards for Size at Birth (Boys)

International Standards for Size at Birth (Girls)

© University of Oxford

Ref: Villar J et al. Lancet 2014; 384: 857-868

Ref: Villar J et al. Lancet 2014; 384: 857-868

Comparison between INTERGROWTH-**21**st data and WHO Child Growth Standards at birth in term babies

	INTERGROWTH-21 st	WHO
Birth weight	3.3 (0.5) kg	3.3 (o.5) kg
Birth length	49.3 (1.8) cm	49.5 (1.9) cm

INTERGROWTH-21st Newborn Size Standard

WHO Child Growth Standard

Villar (2015) Am J Obstet Gynecol 213: 494-9

WHO CHARTS

FROM BIRTH UNTIL **5** YEARS OF AGE BUT NO DISTINCTION AT BIRTH BY GA

WHO Child Growth Standards

USING THE WHO'S CHARTS

Baby Melissa's (X) birthweight: 2.82kg And GA: 36+5 weeks

Baby Sophie's () birthweight: 2.17kg and GA: 40+1 weeks

Baby Michelle's (**O**) birthweight: 2.19kg And GA: 37+1 weeks

Postnatal growth standards for preterm infants: the Preterm 🖒 💽 Postnatal Follow-up Study of the INTERGROWTH-21st Project

José Villar, Francesca Giuliani, Zulfiqar A Bhutta, Enrico Bertino, Eric O Ohuma, Leila Cheikh Ismail, Fernando C Barros, Douglas G Altman, Cesar Victora, Julia A Noble, Michael G Gravett, Manorama Purwar, Ruyan Pang, Ann Lambert, Aris T Papageorghiou, Roseline Ochieng, Yasmin A Jaffer, and Stephen H Kennedy, for the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st)

RESEARCH

Gestational weight gain standards based on women enrolled in the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project: a prospective longitudinal cohort study

Leila Cheikh Ismail,¹ Deborah C Bishop,¹ Ruyan Pang,² Eric O Ohuma,^{1,3} Gilberto Kac,⁴ Barbara Abrams,⁵ Kathleen Rasmussen,⁶ Fernando C Barros,^{7,8} Jane E Hirst,¹ Ann Lambert,¹ Aris T Papageorghiou,¹ William Stones,^{9,10} Yasmin A Jaffer,¹¹ Douglas G Altman,³ J Alison Noble,¹² Maria Rosa Giolito,¹³ Michael G Gravett,¹⁴ Manorama Purwar,¹⁵ Stephen H Kennedy,¹ Zulfiqar A Bhutta,^{16,17} José Villar¹

The International Gestational Weight Gain Standards

Ref: Cheikh Ismail et al. BMJ 2016; 352: i555

INTERGROWTH-21*

CONCLUSIONS

- Fetal, newborn and infant growth are similar across populations when constraints on growth are minimal, justifying the construction of International Growth Standards
- The INTERGROWTH-21st & WHO Child Growth Standards monitor growth up to 5 years of age using the same instruments
- Growth monitoring promotes continuity of care from the womb to the classroom worldwide

UKTEAM

PROJECT WEBSITES:

WWW.INTERGROWTH21.ORG.UK

WWW.INTERBIO21.ORG.UK

71 st

y!

e

ord, UK and

cipants in

STUDY PROTOCOL AND OTHER PROJECT DOCUMENTS

STUDY STRUCTURE AND

RESEARCH CENTRES

PATIENT INFORMATION

LOGIN TO LIVE DATABASE

LOGIN TO TEST DATABASE

INTERBIO-21ST STUDY

PICTURE GALLERY

HOME

ABOUT STUDY

NEWS/EVENTS

INTERGROWTH-21st THE INTERNATIONAL FETAL AND NEWBORN GROWTH CONSORTIUM

UNIVERSITY OF OXFORD

Headlines

23-24 OCTOBER 2012: INTERBIO-21ST STEERING COMMITTEE MEETING [23/10/2012]

The INTERBIO-21st Steering Committee met for the second time 23-24 October 2012 at Green Templeton College. Oxford, to discuss the progress of the study.

Read more

Research centres

THE GLOBAL HEALTH NETWORK:

HTTPS://INTERGROWTH21.TGHN.ORG/

Home

The International Fetal and Newborn Growth Consortium for the 21st Century, or INTERGROWTH-21st, is a global, multidisciplinary network of more than 300 researchers and clinicians from 27 institutions in 18 countries worldwide and coordinated from the University of Oxford. We are dedicated to improving perinatal health globally and committed to reducing the millions of preventable newborn deaths that occur as a result of preterm birth or poor intrauterine growth.

Newborns and very preterm babies reference application

Zika Virus - In response to the recent news about the Zika virus, we draw your attention to the International INTERGROWTH-21st Standards for Head Circumference of newborns and very preterm babies online application tool. LEARN MORE

News

INTERGROWTH 21st - Head circumference training video This website provides clinicians and researchers access to the INTERGROWTH-21stGlobal Perinatal Package. This package is comprised of new, globally-

Zika Virus

In response to the recent news about the Zika virus, we draw your attention to the International INTERGROWTH-21st Standards for Head Circumference of newborns and very preterm infants.

(Access the translated

INTERGROWTH-21st

Press F11 to exit full screen what are you looking for?

Training Toolkit

Password

Global Dissemination

Publications

n for the 21st Century, or INTERGROWTH-21st, is a global, multidisciplinary network of more

in 18 countries worldwide and coordinated from the University of Oxford. We are dedicated

reducing the millions of preventable newborn deaths that occur as a result of preterm birth

INTERGROWTH Standards & Tools

Email

Home About Us

Fetal Growth Standards

Home

Postnatal Growth Standards for Preterm Infants

The International Fet Newborn Size Standards than 300 researcher to improving perinat

INTERGROWTH-21st Newborn Size Application Tool

Very Preterm Size at Birth Reference Charts

Newborns

or poor intrauterine

Gestational Weight Gain preterm ba Standards reference a

Zika Virus - In respo **Pregnancy Dating Standards** news about the Zik attention to the International INTERGROWTH-21st Standards for Head

Circumference of newborns and very preterm babies online application tool.

News

INTERGROWTH 21st - Head circumference training video

Head circumference training video now available to support and enhance use of the latest INTERGROWTH-21st head circumference measurement tools READ MORE

Z-score calculator for fetal growth standards

This website provides clinicians and researchers access to the INTERGROWTH-21stGlobal Perinatal Package. This package is comprised of new, globallyvalidated standards and practical training resources. To download the standards please use the download links to the right of this page.

These standards are paired with an expanding Training Toolkit and a rich body of literature on our methods

Zika Virus

Community

LOG IN/REGISTER

Library

MORE V

SEARCH

Media

In response to the recent news about the Zika virus, we draw your attention to the International INTERGROWTH-21st Standards for Head Circumference of newborns and very preterm infants.

(Access the translated tool: Português / Español)

Download INTERGROWTH-21st Standards & Tools Below

FETAL GROWTH

News

INTERGROWTH 21st - Head circumference training video

Head circumference training video now available to support and enhance use of the latest INTERGROWTH-21st head circumference measurement tools READ MORE

Z-score calculator for fetal growth standards now available

This tool is currently available in Excel format and will be updated by a web and PC/MAC application developed early in 2016. READ MORE

INTERGROWTH-21st Newborn Size Application Tool - Mac and web versions now available.

The INTERGROWTH-21st Newborn Size Application Tool for calculating centiles and zscores for birth weight, length and head circumference is now available for download for Windows and Mac users, along with a web browser version. READ MORE

Read more news stories from INTERGROWTH-21st here.

Press F11 to exit full screen

researchers access to the INTERGROWTH-21stGlobal Perinatal Package. This package is comprised of new, globally-

< >

validated standards and practical training resources. To download the standards please use the download links to the right of this page.

These standards are paired with an expanding Training Toolkit and a rich body of literature on our methods.

Policymakers may be interested in learning our progress with dissemination so far, and the implications of our new standards for health policy.

A selection of INTERGROWTH-21st-related news articles from around the world and information regarding press inquiries is available on our Media page.

Global Health Training Centre

INTERGROWTH-21st course on maternal, fetal and newborn growth monitoring

This three module course communicates the methodology of maternal, fetal and newborn growth monitoring and the application of the INTERGROWTH-21st international growth standards to make

(Access the translated tool: Português / Español)

Download INTERGROWTH-21st Standards & Tools Below

INTERGROWTH-21st very preterm size at birth reference charts thelancet.com/pdfs/journals/... and in the media dailymail.co.uk/health/article...

New growth charts a val... Experts at the University o... dailymail.co.uk

Compare your newborn biometry to Intergrowth standards:

○ Upload data or ● Enter data manually

Boy 294 days old

International Standards for Size at Birth (v1.0.6094.16452)

About Language Help

Compare your newborn biometry to INTERGROWTH-21st standards/references:

133 entries, 0 error(s)

 \odot Upload data or \bigcirc Enter data manually

·	Child	hild Length				Weight				Head Circumference			
	Id	Sex	Age (d)	cm	z-score	centile	kg	z-score	centile	cm	z-score	centile	
Import biometry measurements:	1	Male	168	31.79	-0.1633	43.51	0.64	0.0204	50.81	22.34	-0.0008	49.97 📥	
H:\Anthropometry\Anthro apps\Check file Browse	2	Female	169	31.97	0.0002	50.01	0.65	0.2968	61.67	22.47	0.1623	56.45	
	3	Male	170	32.15	-0.1644	43.47	0.66	-0.0199	49.21	22.59	-0.0031	49.87	
	4	Female	171	32.33	-0.0009	49.96	0.68	0.3314	62.98	22.72	0.1600	56.36	
	5	Male	172	32.51	-0.1655	43.43	0.69	0.0118	50.47	22.85	0.0009	50.04 =	
H:\Anthropometry\Anthro apps\C (3.62 KB, Imported 9/15/2016 2:04:28 PM)	6	Female	173	32.70	0.0018	50.07	0.70	0.2836	61.16	22.98	0.1641	56.52	
	7	Male	174	32.88	-0.1628	43.53	0.72	0.0349	51.39		-0.0014	49.95	
	8	Female	175	33.06	0.0007	50.03	0.73	0.3042	61.95		0.1618	56.43	
	9	Male	176	33.24	-0.1639	43.49	0.74	-0.0194	49.23	23.36	0.0027	50.11	
	10	Female	177	33.42	-0.0004	49.98	0.76	0.3171	62.44	23.48	0.1595	56.34	
	11	Male	178	33.60	-0.1650	43.45	0.77	-0.0086	49.66		0.0004	50.02	
	12	Female	179	33.78	-0.0015	49.94	0.79	0.3231	62.67	23.74	0.1636	56.50	
	13	Male	180	33.97	-0.1622	43.56	0.80	-0.0047	49.81		-0.0019	49.92	
	14	Female	181	34.15	0.0012	50.05	0.82	0.3227	62.65		0.1613	56.41	
	15	Male	182	34.33	-0.1633	43.51	0.83	-0.0069	49.72		0.0022	50.09	
	16	Female	183	34.51	0.0001	50.01	0.85	0.3164	62.41		0.1589	56.31	
	17	Male	184	34.69	-0.1644	43.47	0.86	-0.0149	49.41		-0.0001	50.00	
	18	Female	185	34.87	-0.0010	49.96	0.88	0.3047	61.97	24.50	0.1630	56.48	
	19	Male	186	35.05	-0.1655	43.43	0.89	-0.0281	48.88	24.62	-0.0024	49.90	
	20	Female	187	35.24	0.0018	50.07	0.91	0.2880	61.33	24.75	0.1607	56.38	
	21	Male	188	35.42	-0.1628	43.53	0.93	0.0097	50.39	24.88	0.0017	50.07	
	22	Female	189	35.60	0.0007	50.03	0.95	0.3215	62.61	25.00	0.1584	56.29	
	23	Male	190	35.78	-0.1639	43.49	0.96	-0.0146	49.42	25.13	-0.0007	49.97	
	24	Female	191	35.96	-0.0004	49.98	0.98	0.2942	61.57	25.26	0.1625	56.45	
	25	Male	192	36.14	-0.1650	43.45	1.00	0.0090	50.36	25.38	-0.0030	49.88	
	26	Female	193	36.32	-0.0015	49.94	1.02	0.3141	62.33	25.51	0.1602	56.36	
	27 28	Male	194 195	36.51	-0.1623 0.0012	43.56	1.03	-0.0247	49.01	25.64 25.77	0.0011	50.04 56.52	
		Female		36.69		50.05	1.05	0.2779	60.94		0.1643	49.95	
	29 30	Male	196	36.87	-0.1634 0.0001	43.51	1.07	-0.0133	49.47	25.89 26.02	-0.0012	56.43	
		Female	197	37.05		50.00	1.09	0.2861	61.26		0.1620		
	31	Male Female	198 199	37.23	-0.1645 -0.0010	43.47	1.11	-0.0081	49.68	26.15 26.27	0.0029	50.12 56.34	
	32 33	Male	200	37.41 37.59	-0.0010	49.96 43.43	1.13 1.15	0.2883	61.34 49.65	26.27	0.1597 0.0006	50.34	
	33		200	37.59	-0.1656 0.0018		1.15	-0.0088 0.2849			0.0006	50.02	
	34	Female Male	201 202	37.78	-0.1628	50.07 43.53	1.17	-0.0148	61.22 49.41		-0.0017	49.93 *	
	53	wate	202	57.96	-0.1628	43.53	1.19	-0.0148	49.41	20.05	-0.0017	49.93	

Similar tools for fetal growth and preterm postnatal growth are being developed

_ 0 _X

Expo

And like our babies, INTERGROWTH-21st keeps on growing...

IN 2016, WE STILL BELIEVE IN GLOBAL SOLUTIONS TO GLOBAL HEALTH PROBLEMS

Turin, 25th - 27th September 2011

"MEN'S NATURES ARE ALIKE, IT IS THEIR HABITS THAT CARRY THEM APART"

Confucius, 479 BC